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Appendix 1: Finding the best structure

The best structure for the prediction is here defined as the nested structure with the highest

expected number of correctly predicted positions. This structure is found by a dynamical

programming approach similar to the CYK algorithm, using pairing probabilities which can be

calculated from the inside-outside variables. Denote the sub-alignment from position i to j as Ci,j

(i.e. columns i through j in the alignment) and let Ci represents column i by itself. Write the inside

and outside variables as (1):

Inside: )()( ,, jiji CNPNe →=

Outside: )()( ,11,1, njiji NCCSPNf +−→=

where N is a non-terminal, S is the starting non-terminal, and n is the alignment length. Assume that

all pairs are formed by production rules of the type: ddNN 21 → , where the d's represent a pair.

The probability (under the model) that position i pairs with j is:

∑ −+→=
21 ,

21,1211, )()()(),(
NN

jijijid NeCNCNPNfjiP

The sum is effectively only over the rules forming pairs. The probability that position i does not

form a pair is:

∑
≠

−=
ij

ds jiPiP ),(1)(

Define Ei,j as the maximum possible number of expected correct non-nested predictions in the

window from position i to position j in the alignment. Setting Ei,j = 0, for i > j, the Ei,j’s can be

calculated for ji ≤ :
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The Ei,j's can now be calculated in order of increasing j-i. Actually, the unpaired part of the

recursion could be done by the bifurcation step, by initialising the Ei,i's to Ps(i) , but the above is

easier to interpret. E1,n is the maximum expected number of correctly predicted positions in the

alignment. The prediction that gives this maximum can be found by backtracking the above

recursion.

The reliability value of the prediction in each position is given by the probability that the prediction

is correct under the model, i.e. the appropriate Pd or Ps value.

Some non-nested structures may exist which have higher expected numbers of correctly predicted

positions than the nested one found above. This could happen even though the SCFG used to find

pairing probabilities does not take non-nested structures into account. This will be a rare occurrence

and would probably not give any practical information. The structure could be found by a maximal

weighted matching approach on the pairing probabilities (2).
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Appendix 2: Implementation details

Calculations

Pfold has two primary time consuming elements. With an alignment length of n, they are:

• Doing the inside-outside calculations, which has a running time of O(n3) (1).

• Calculating the column pair probabilities, which has a running time of O(n2).

It seems that the inside-outside calculations might consume the most time. It turns out, however,

that the constant in the column pair probability calculation can be quite large. This part can be the

most time consuming of the calculations when short sequences or many aligned sequences are

analysed. The reason is that the column pair probabilities are calculated by multiplying vectors with

16 by 16 matrices in a post-order traversal of the tree (2). For large trees, many such matrix

multiplications has to be done.

Time can be saved by avoiding calculations of column pairs with the same nucleotides more than

once. This is effective for trees in the mid size range because different columns often have the same

nucleotides, e.g. all identical. When analysing larger trees, a few mutations have occurred in most

columns often making them slightly different. To cope with this situation, partial column

calculations can be stored for later use.

This has been implemented in the following way: when a calculation is made, the result is stored

for the sub-tree below each node. When a new calculation is made, the results up to a given node

are re-used if the sequence positions are the same for the sequences in the sub-tree below the node.

This drastically reduces computation time, since no identical matrix multiplications are done twice.

It has the cost of a high memory usage and in some cases a compromise is useful. This was

implemented by only saving the results from a sub-tree if it was likely that it would be encountered

again. Ideally, this likelihood for nucleotides in a sub-tree should be calculated using the same

matrix as in the tree estimation described above. Probabilities for column pairs are closely

approximated as the products of the individual columns, since two given columns has a probability

of less than 1/n of forming a pair and non-pairing columns are treated as independent. Instead of

using the matrix from the tree calculations, the matrix for single positions was used, since these

calculations are already used in the algorithm.
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Speed

For a discussion of the computational speed we use a simulated alignment of 24 sequences of

length 1200, related by a balanced unrooted tree with all branch length equal to one expected

replacement per ten sites, according to the Jukes-Cantor model (3). Calculations were done on a

700 MHz Intel Pentium III computer with 256 Mb ram.

The finished version of the program can predict the structure of the simulated alignment in about

220 seconds. Without storing partial column probability results in the nodes, the computation time

increases by a factor of 1.8. This factor is very dependent on the alignment and phylogeny in

question. The factor will be higher for: shorter alignments, more sequences, and for more closely

related sequences. For example, the factor is 9.8 for a set of 48 sequences of length 400, related

again by a balanced tree, but with branch lengths a tenth of the above.

The time saving by only estimating the phylogeny once is very significant. To shed light on this,

we assume that the steps of an ML search will be roughly the same for a structural model and for a

model where sites are treated independently. Thus, we can use the number of steps performed by a

standard ML method of branch length optimisation. For the test set, a maximum likelihood

estimation of the branch lengths required 1787 estimates under the Jukes Cantor model. The ML

estimation was done one branch at a time until no significant change in likelihood occurred. This

could be done in a more sophisticated way, e.g. by the BFGS method described by Press et al. (4).

This is unlikely to improve the number of likelihood evaluations to less than 400, since there are 45

branch lengths to estimate. This means that the speed improvement would be of this magnitude for

the test set.
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